6 仿真结果
为了进行实验研究和分析,对带有软开关的三相pwm整流器在matlab/simulink中进行了仿真,仿真的参数如下:交流侧的三相电压为380v,开关频率为20khz,直流侧电压设定值为450v,电路参数:cr1=6500μf,cr2=450μf,lr=20mh。
仿真结果如图7和图8所示:图7(a)中表示的是直流侧电压的仿真波形,可以发现直流侧电压vdc基本稳定在450v,而且电压的波动范围很小,符合设计的要求,图7(b)表示的是电网侧交流电压电流之间的关系,在直流侧电压稳定后,电压和电流一直保持着同相的关系,功率因数接近为1,能够实现充电机的高功率因数运行的要求;图8(a)表示的是电压的调制比的大小,同样他的波动范围非常小,图8(b)表示的是有功和无功电流的大小,可以看到无功电流一直稳定在0附近,整流器的功率因数能够接近为1。 7 结束语
本文采用开关电源技术设计了大功率的汽车充电器,并对三相pwm整流器进行了详细的设计。综合采用了零电压软开关(zvs)技术和空间矢量脉宽调制(svpwm)技术,并且根据软开关的开关条件对svpwm的调制方法进行改进,使其能够获得最低的失真度(df)和最小的总谐波失真(thd)。最后对三相pwm整流器进行了仿真,仿真显示充电过程中能够获得很高的功率因数,而且交流侧电流接近于正弦,直流侧电压稳定。由于充电机能够达到很高的功率因数,同时谐波含量也很低,所以可以减小充电站的功率因数校正环节的负担,同时设计的三相整流器由于具有功率因数可控的特点,可以用作充电站的功率因数校正环节,为充电机的大规模使用提供了必要条件。 参考文献
[1] 王建赜,伏祥运,曾繁鹏,等。可连续调节容性无功的pwm型静止无功补偿器[j]。电力系统自动化,2005,29(8):71-74.
[2] nasser h.kutkut,deepak m. divan, donald w. novotny, et al.design consideration and topology selection for a 120-kw igbtconverter for ev fast charging. ieee transcations on powerelectronics, vol.13, no.1, january 1998.
[3] ying-chun chuang, yu-lung ke, hung-shiang chuang, et al.implementation and analysis of an improved series-loaded resonantdc-dc coverter operating above resonance for battery chargers. ieeetransactions on industry applications, vol.45, no.3, may/june 2009.
[4] t.-f. wu, j.-c. hung, s.-y. tseng, et al. analysis and design ofa battery charger with interleaved pfc based on an asymmetricalhalf-bridge topology. ieice/ieee intelec’03, oct. 19-23, 2003
[5] s. chunlei, b. c. walker, e. zeisel, b. hu, g. h. mcallister. ahighly integrated power management ic for advanced mobileapplications. ieee journal of solid-state circuits, vol. 42, no. 8,august 2007, pp. 1723-1731.
[6] y. c. chuang, and y. l. ke. high-efficiency and low-stresszvt-pwm dc-to-dc converter for battery charger. ieee transactions onindustry electronicss, vol. 55, no. 8, august 2008, pp. 3030-3037.
[7] l. r. chen, j. j. chen, n. y. chu, and g. y. han. current-pumpedbattery charger. ieee transactions on industry electronicss, vol.55, no. 6, june 2008, pp. 2482-2488.
[8] 武志贤,蔡丽娟,汤酉元。三相高功率因数整流器的研究现状及展望[j]。电气传动,2005,35(2):3-7.
[9] h.m. suryawanshi, s.g. tarnekar. resonant converter in highpower factor, high voltage dc applications. iee proc.-electr. powerappl., vol. 145, no.4, july 1998.
[10]a. kawahashi. a new-generation hybrid electric vehicle and itssupporting power semiconductor devices. proceedings of the 16thinternational symposium on power semiconductor devices and ics.2004, ispsd’04, may 24-27, 2004, pp. 23-29.
[11]刘文华,马晓军,郑文斌,等。高功率因数48v/50a通信开关电源[j]。电力系统自动化,1997,21(9):69-71.
[12]c.r.mersman, m.m.morcos, and n.g.dillman. performance offerroresonant transformer in microprocessor-based battery chargerfor electric vehicles. in proc. 7th european power electronicsconf., trondheim, norway, 1997, pp.162-167.
[13]周原,胡伟,沈沉,等。空间矢量脉宽调制与单周控制的等效性[j]。电力系统自动化,2005,29(12):19-23.
[14]hengchun mao, fred c. y. lee, dushan boroyevich, et al. reviewof high-performance three-phase power-factor correction circuits.ieee transaction on industrial electronics, vol.44, no.4, august1997.
[15]m.m.morcos, curtis r. mersman, g.g. sugavanam, norman g.dillman. battery chargers for electric vehicles. ieee powerengineering review, november2000.
[16]张崇巍,张兴.pwm整流器及其控制[m].北京:机械工业出版社,2003.10.
[17]m. j. bland, l. emprinham, j.c. clare, and p.w.wheeler.a newresonant soft switching topology for direct ac-ac converters. ieeepower electronics specialists conference. june 2002.
[18]malinowski m., kazmierkowski m.p. .simple direct power controlof three phase pwm rectifier using space vector modulation-acomparative study. epe journal, vol.13, n°2, mai 2003.
[19]bai hua,zhao zheng-ming, meng shuo. comparison of three pwmstrategies-spwm, svpwm & one-cycle control.in; the fifthinternational conference on power electronics and drive systems, vol2. singapore: 2003.1313-1316.
[20]yong c.jung, hyo l. liu, guk c. cho,and gyu h. cho. softswitching space vector pwm inverter using a new quasi-parallelresonant dc link. ieee transactions on power electronics, vol. 11,no.3, may 1996.