全新论坛MCU智学网上线,欢迎访问新论坛!稀缺资源、技术干货、参考设计、原厂资料尽在MCU智学网
更新自动建库工具PCB Footprint Expert 2023.13 Pro / Library Expert 破解版

双极型半导体三极管的相关知识

[复制链接]
2224 0

本文包含原理图、PCB、源代码、封装库、中英文PDF等资源

您需要 登录 才可以下载或查看,没有帐号?注册会员

x
半导体三极管有两大类型,一是双极型半导体三极管, 二是场效应半导体三极管
  双极型半导体三极管是由两种载流子参与导电的半导体器件,它由两个 PN 结组合而成,是一种CCCS器件。 场效应型半导体三极管仅由一种载流子参与导电,是一种VCCS器件。
2.1 双极型半导体三极管
2.1.1 双极型半导体三极管的结构
  双极型半导体三极管的结构示意图如图02.01所示。它有两种类型:NPN型和PNP型。中间部分称为基区,相连电极称为基极,用B或b表示(Base);
一侧称为发射区,相连电极称为发射极,用E或e表示(Emitter);
另一侧称为集电区和集电极,用C或c表示(Collector)。
E-B间的PN结称为发射结(Je),
C-B间的PN结称为集电结(Jc)。


89bfdb64b03f96182cb8ba4d924c5aeb.gif
图02.01 两种极性的双极型三极管



  双极型三极管的符号在图的下方给出,发射极的箭头代表发射极电流的实际方向。从外表上看两个N区(或两个P区)是对称的,实际上发射区的掺杂浓度大,集电区掺杂浓度低,且集电结面积大。基区要制造得很薄,其厚度一般在几个微米至几十个微米。
2.1.2 双极型半导体三极管的电流分配与控制
双极型半导体三极管在工作时一定要加上适当的直流偏置电压。若在放大工作状态:发射结加正向电压,集电结加反向电压。现以 NPN型三极管的放大状态为例,来说明三极管内部的电流关系, 见图02.02。


19951263156518d2bae2997459a290c3.gif
图02.02 双极型三极管的电流传输关系



  发射结加正偏时,从发射区将有大量的电子向基区扩散,形成的电流为IEN。与PN结中的情况相同。从基区向发射区也有空穴的扩散运动,但其数量小,形成的电流为IEP。这是因为发射区的掺杂浓度远大于基区的掺杂浓度。
  进入基区的电子流因基区的空穴浓度低,被复合的机会较少。又因基区很薄,在集电结反偏电压的作用下,电子在基区停留的时间很短,很快就运动到了集电结的边上,进入集电结的结电场区域,被集电极所收集,形成集电极电流ICN。在基区被复合的电子形成的电流是 IBN。
另外,因集电结反偏,使集电结区的少子形成漂移电流ICBO。于是可得如下电流关系式:
IE= IEN+ IEP 且有IEN>>IEP
IEN=ICN+ IBN 且有IEN>> IBN , ICN>>IBN
IC=ICN+ ICBO
IB=IEP+ IBN-ICBO
IE=IEP+IEN=IEP+ICN+IBN=(ICN+ICBO)+(IBN+IEP-ICBO)=IC+IB
  以上关系在图02.02的动画中都给予了演示。由以上分析可知,发射区掺杂浓度高,基区很薄,是保证三极管能够实现电流放大的关键。若两个PN结对接,相当基区很厚,所以没有电流放大作用,基区从厚变薄,两个PN结演变为三极管,这是量变引起质变的又一个实例。

2.1.3 双极型半导体三极管的电流关系
(1) 三种组态
双极型三极管有三个电极,其中两个可以作为输入, 两个可以作为输出,这样必然有一个电极是公共电极。三种接法也称三种组态,见图02.03。
共发射极接法,发射极作为公共电极,用CE表示;
共集电极接法,集电极作为公共电极,用CC表示;
共基极接法,基极作为公共电极,用CB表示。

f83b3fe05e95cdbade10125cd15a15b7.gif
图02.03 三极管的三种组态



(2) 三极管的电流放大系数
  对于集电极电流IC和发射极电流IE之间的关系可以用系数来说明,定义:
f9b697ed4cad90fb88bc9b51d2faaaf0.gif
  称为共基极直流电流放大系数。它表示最后达到集电极的电子电流ICN与总发射极电流IE的比值。ICN与IE相比,因ICN中没有IEP和IBN,所以 的值小于1, 但接近1。由此可得:
cd904b79c8eae7905d6763c09bdba24e.gif
称为共发射极接法直流电流放大系数。于是
76978257ed499dad9711159b90a0c35a.gif
2.1.4 双极型半导体三极管的特性曲线
  本节介绍共发射极接法三极管的特性曲线,即
c31fdc0c5e84954908213e76cdbd260b.gif
  这里,B表示输入电极,C表示输出电极,E表示公共电极。所以这两条曲线是共发射极接法的特性曲线。
iB是输入电流,vBE是输入电压,加在B、E两电极之间。
iC是输出电流,vCE是输出电压,从C、E两电极取出。
共发射极接法的供电电路和电-压电流关系如图02.04所示。


e49aa70764be8fa4f0c5303ce8e66e6b.gif
图02.04 共发射极接法的电压-电流关系



(1)输入特性曲线
  简单地看,输入特性曲线类似于发射结的伏安特性曲线,现讨论iB和vBE之间的函数关系。因为有集电结电压的影响,它与一个单独的PN结的伏安特性曲线不同。 为了排除vCE的影响,在讨论输入特性曲线时,应使vCE=const(常数)。vCE的影响,可以用三极管的内部的反馈作用解释,即vCE对iB的影响。
共发射极接法的输入特性曲线见图02.05。其中vCE=0V的那一条相当于发射结的正向特性曲线。当vCE≥1V时, vCB= vCE - vBE>0,集电结已进入反偏状态,开始收集电子,且基区复合减少, IC / IB增大,特性曲线将向右稍微移动一些。但vCE再增加时,曲线右移很不明显。曲线的右移是三极管内部反馈所致,右移不明显说明内部反馈很小。


04cc9e54da9b78f63d2e6637ba2bcfcc.gif
图02.05 共发射极接法输入特性曲线



  输入特性曲线的分区:死区、非线性区、线性区。
(2)输出特性曲线
  共发射极接法的输出特性曲线如图02.06所示,它是以iB为参变量的一族特性曲线。现以其中任何一条加以说明,当vCE=0 V时,因集电极无收集作用,iC=0。当vCE微微增大时,发射结虽处于正向电压之下,但集电结反偏电压很小,如vCE< 1 V;vBE=0.7 V; vCB= vCE- vBE≤0.7 V 。集电区收集电子的能力很弱,iC主要由vCE决定。当vCE增加到使集电结反偏电压较大时,如vCE ≥1 V, vBE ≥0.7 V,运动到集电结的电子基本上都可以被集电区收集,此后vCE再增加,电流也没有明显的增加,特性曲线进入与vCE轴基本平行的区域 (这与输入特性曲线随vCE增大而右移的原因是一致的) 。
输出特性曲线可以分为三个区域
饱和区——iC受vCE显著控制的区域,该区域内vCE的数值较小,一般vCE<0.7 V(硅管)。此时发射结正偏,集电结正偏或反偏电压很小。
截止区——iC接近零的区域,相当iB=0的曲线的下方。此时,发射结反偏,集电结反偏。
放大区——iC平行于vCE轴的区域,曲线基本平行等距。此时,发射结正偏,集电结反偏,电压大于0.7 V左右(硅管)


e3cd39cd6d97bb5274d15f8b64c4c065.gif
图02.06 共发射极接法输出特性曲线(动画2-2)


2.1.5 半导体三极管的参数
半导体三极管的参数分为直流参数、交流参数和极限参数三大类。
(1) 直流参数
① 直流电流放大系数
1.共发射极直流电流放大系数 907dde1c3ca3f346bd88aca7072d5912.gif )ICBO
相当基极开路时,集电极和发射极间的反向饱和电流,即输出特性曲线IB=0那条曲线所对应的Y坐标的数值,如图02.09所示。


092087fc0bb73605363ca6e9971cc0e8.gif
图02.09 ICEO在输出特性曲线上的位置


(2) 交流参数
① 交流电流放大系数
1.共发射极交流电流放大系数?
a2e4e0c1d587bc036567b39980832908.gif
在放大区, B值基本不变,可在共射接法输出特性曲线上,通过垂直于X轴的直线求取△IC/△IB。或在图02.08上通过求某一点的斜率得到?。具体方法如图02.10所示。


d99ee39364f9f7411da74e40d4b3c514.gif


2.共基极交流电流放大系数α
5a1c081d4f164439dac24d60476ee42a.gif
当ICBO和ICEO很小时,可以不加区分。
② 特征频率fT
三极管的?值不仅与工作电流有关,而且与工作频率有关。由于结电容的影响,当信号频率增加时,三极管的?将会下降。当?下降到1时所对应的频率称为特征频率,用fT表示。
(3) 极限参数
① 集电极最大允许电流ICM
如图02.08所示,当集电极电流增加时,? 就要下降,当?值下降到线性放大区?值的70~30%时,所对应的集电极电流称为集电极最大允许电流ICM。至于?值下降多少,不同型号的三极管,不同的厂家的规定有所差别。可见,当IC>ICM时,并不表示三极管会损坏。
② 集电极最大允许功率损耗PCM
集电极电流通过集电结时所产生的功耗, PCM= ICVCB≈ICVCE,因发射结正偏,呈低阻,所以功耗主要集中在集电结上。在计算时往往用VCE取代VCB。
③ 反向击穿电压
反向击穿电压表示三极管电极间承受反向电压的能力,其测试时的原理电路如图02.11所示。

c05335eca80cf8ffaa30f643c4a0d8c9.gif
图02.11 三极管击穿电压的测试电路

1. V(BR)CBO——发射极开路时的集电结击穿电压。下标BR代表击穿之意,是Breakdown的字头,C、B代表集电极和基极,O代表第三个电极E开路。
2. V(BR)EBO——集电极开路时发射结的击穿电压。
3. V(BR)CEO——基极开路时集电极和发射极间的击穿电压。
对于V(BR)CER表示BE间接有电阻,V(BR)CES表示BE间是短路的。几个击穿电压在大小上有如下关系:
V(BR)CBO≈V(BR)CES>V(BR)CER>V(BR)CEO>V(BR)EBO
由最大集电极功率损耗PCM、ICM和击穿电压V(BR)CEO,在输出特性曲线上还可以确定过损耗区、过电流区和击穿区,见图02.12。


74d55e636f65db36c81f7b3ddcc377b1.gif
图02.12 输出特性曲线上的过损耗区和击穿区



2.1.6 半导体三极管的型号

ac0345f9b54c76bf252ba6675d473ec2.gif
457f9413e973e83aea4079aadcbe4be8.gif
d23f751cb5bc9c97d497735f357722fe.gif
4334a2626a2425386108f70d078b026c.gif
3358eb8860f2908d93890a9043d0a7f6.gif

举报

回复
*滑块验证:
您需要登录后才可以回帖 登录 | 注册会员

本版积分规则

打开支付宝扫一扫,最高立得1212元红包
搜索

图文热点

更多

社区学堂

更多

客服中心

QQ:187196467 服务时间:周一至周日 8:30-20:30

关注我们

关于我们
关于我们
友情链接
联系我们
帮助中心
网友中心
购买须知
支付方式
服务支持
资源下载
售后服务
定制流程
关注我们
官方微博
官方空间
官方微信
快速回复 返回顶部 返回列表